
Information Coding / Computer Graphics, ISY, LiTH

GPU Computing with fragment shaders

”Classic GPGPU”
Use graphics shaders for general-purpose

computing.

Adapt your data and computing to fit the graphics
pipeline.

Hot until CUDA arrived, now overshadowed by CUDA
and OpenCL.

Information Coding / Computer Graphics, ISY, LiTH

Why is classic GPGPU interesting?
• Highly suited to all problems dealing with images,

computer vision, image coding etc

• Parallelization ”comes natural”, you canʼt avoid it and
good speedups are likely. Fewer pitfalls.

• Highly optimized (for graphics performance).

• Compatibility is vastly superior!

• Very much easier to install!

Information Coding / Computer Graphics, ISY, LiTH

So what is not so good?
• Must map data to image data

• Computing controlled by pixels in output image

• No shared memory access (except for compute shaders)

However: OpenGL 4 adds much flexibility, moves closer to
CUDA and (especially) OpenCL. Writable textures, atomics,

synchronization...

Information Coding / Computer Graphics, ISY, LiTH

The OpenGL pipeline

Vertex
processorVertex coordinates

and normal vectors
Transformed
coordinates

Primitive
assembly

Primitives,
connectivity

Triangles etc

Raster
conversion

Clip, cull

Fragment
processor Pixel coord

Fragment
operations

Frame buffer
operations

+color, texture

Texture

Information Coding / Computer Graphics, ISY, LiTH

Vertex
processorVertex coordinates

and normal vectors
Transformed
coordinates

Primitive
assembly

Primitives,
connectivity

Triangles etc

Raster
conversion

Clip, cull

Fragment
processor Pixel coord

Fragment
operations

Frame buffer
operations

+color, texture

Texture

Out of these, three are
programmable!

Information Coding / Computer Graphics, ISY, LiTH

Vertex
processorVertex coordinates

and normal vectors
Transformed
coordinates

Primitive
assembly

Primitives,
connectivity

Triangles etc

Raster
conversion

Clip, cull

Fragment
processor Pixel coord

Fragment
operations

Frame buffer
operations

+color, texture

Texture

But only one creates easily
accessible output data!

Information Coding / Computer Graphics, ISY, LiTH

GPGPU
Problem:

• Algorithms must be parallellized - more than with
CUDA. No intermediate results from neighbors can be
used. (Some possibilites with GL4.)

• No access to shared memory. (But access to
constant memory and easy access to texture
memory.)

Does it pay to use shaders for GPU Computing?

Information Coding / Computer Graphics, ISY, LiTH

Model

World-to-view

coordinates
World

coordinates
View

coordinates
Projected

coordinates
Device

coordinates

TwRwRvTvPSdTd

transformation
Model-to-world
transformationProjection

transformation
Device
transformation

Typical OpenGL situation
• Complex geometry

• Many transformations
• Perspective projection

• Lighting and material calculations
for the surfaces

• Many texture accesses for interpolation and
supersampling

Information Coding / Computer Graphics, ISY, LiTH

Typical GPGPU processing
(also used in filtering in graphics):

• Render to a single rectangle covering the entire
image buffer.
• Use FBOs for effective feedback
• Floating-point buffers
• Ping-ponging, many pass with different shaders

Render image 1:1 Output

shader

Information Coding / Computer Graphics, ISY, LiTH

The GPGPU/shaders model
• Array of input data = texture
• Array of output data = resulting frame buffer
• Computation kernel = shader
• Computation = rendering
• Feedback = switch between FBOʼs or copy
frame buffer to texture

Information Coding / Computer Graphics, ISY, LiTH

Computation = rendering
Typical situation:

• Texture and frame buffer same size
• Render the polygon over the entire frame buffer

Texture Frame buffer

shader

Information Coding / Computer Graphics, ISY, LiTH

Kernel = shader
Shaders are read and compiled to one or more program objects. A GPGPU
application can use several shaders in conjunction!

Activate desired shader as needed using glUseProgram();

The fragment shader performs the computation:

uniform sampler2D texUnit;
in vec2 texCoord;
out vec4 fragColor;

void main(void)
{
 vec4 texVal = texture(texUnit, texCoord);
 fragColor = sqrt(texVal);
}

Information Coding / Computer Graphics, ISY, LiTH

Render a single polygon
• Texture and frame buffer same size
• Render polygon over entire frame buffer
GLfloat quadVertices[] = { -1.0f, -1.0f, 0.0f,

-1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
1.0f, -1.0f, 0.0f};

GLuint quadIndices[] = {0, 1, 2, 0, 2, 3}; (1, 1)

(-1, -1)

Information Coding / Computer Graphics, ISY, LiTH

Program structure:
• Set up OpenGL
• Upload data to texture
• Load shaders from file and compile
• Draw quad on screen using OpenGL
• Data is computed by the fragment shader, per pixel
• Output can be downloaded as image data

Examples…

Information Coding / Computer Graphics, ISY, LiTH

Feedback
We must be able to pass output from one operation
as input of the next!

Solution: Render to texture, ”framebuffer objects”,
create a texture used as input for a later stage

Information Coding / Computer Graphics, ISY, LiTH

“Ping-pong”-ing

Using “framebuffer objects” the
output image can be a texture

Input data is a number of
textures. Limited by the
number of texturing units
available.

The kernel reads from one or
more texture, writes into the
frame buffer

Information Coding / Computer Graphics, ISY, LiTH

Filtering, convolution
Common problem, highly suited for shaders.

All kinds of linear filters:

• Low-pass filtering (smoothing)
• Gradient, embossing

Must be done by gather operations, not
scatter!

Information Coding / Computer Graphics, ISY, LiTH

3x1 filter
uniform sampler2D texUnit;
uniform float texSize;
in vec2 texCoord;
out vec4 fragColor;

void main(void)
{

float offset = 1.0 / texSize;
vec2 tc = texCoord;
vec4 c = texture(texUnit, tc);
tc.x = tc.x + offset;
vec4 l = texture(texUnit, tc);
tc.x = tc.x - 2.0*offset;
vec4 r = texture(texUnit, tc);
tc.x = tc.x - offset;
fragColor = (c + c + l + r) * 0.25;

}

1 2 1

More graphics heritage:
Index data by steps of
1/size, not 1!

Information Coding / Computer Graphics, ISY, LiTH

Separable filters

1 4 6

4 16 24

4 1

16 4

6 24 36

4 16 24

24 6

16 4

1 4 6 4 1

1 2 1

1

2

1

1

2

1

1 2 1⊗

=

⊗

⊗

Implemented as ping-ponging passes.
Optimization possibilities!

Information Coding / Computer Graphics, ISY, LiTH

Scatter vs gather

Shaders give output for one pixel -> gather only!

Scatter Gather

Information Coding / Computer Graphics, ISY, LiTH

How about CUDA/OpenCL?
Scatter vs gather: You usually prefer gather. Less
synchronization! (Remember,synchronization comes for a cost!)

Separable filters: Optimization just as valid for all techniques!
(But particularly common in shaders, for images.)

Information Coding / Computer Graphics, ISY, LiTH

Sorting
QuickSort hard to implement in shaders

Bitonic Sort fits shaders well (see earlier lectures)

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

One
rendering
pass per
stage!

Information Coding / Computer Graphics, ISY, LiTH

Reduction
Reduction algorithms are implemented by a ping-ponging pyramid

Maximum, minimum, global average...

Output smaller than input

(Images by Dominik Göddeke)

Information Coding / Computer Graphics, ISY, LiTH

Reduction
1) Texture pyramid, typically 2x2

2) Constant texture size, use smaller
and smaller parts of the texture!

Same performance! The geometry
coverage is what counts!

Method just as relevant for CUDA/OpenCL! But there
you can make the passes with less overhead!

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:
• Shader-based GPGPU is not dead, it is just not hyped

Superior compatibility and ease of installation makes it highly
interesting for the forseeable future. Especially suitable for all image-

related problems.

• How to do GPGPU with shaders

FBOs, Ping-ponging, algorithms, special considerations.

But stay tuned for Compute Shaders to change things...

